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a b s t r a c t

Theoreticians have been enchanted by the secrets of the brain for many years: how and why does
it work so well? There has been a long history of searching for its mechanisms. Theoretical or even
mathematical scientists have proposed various models of neural networks which has led to the birth
of a new field of research. We can think of the ‘pre-historic’ period of Rashevski and Wiener, and then
the period of perceptrons which is the beginning of learning machines, neurodynamics approaches, and
further connectionist approaches. Now is currently the period of computational neuroscience. I have been
working in this field for nearly half a century, and have experienced its repeated rise and fall. Now having
reached very old age, I would like to state my own endeavors on establishing mathematical neuroscience
for half a century, from a personal, even biased, point of view. It would be my pleasure if my experiences
could encourage young researchers to participate in mathematical neuroscience.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Science begins with observations of phenomena. They are then
categorized for systematic descriptions and consolidated as knowl-
edge. The final stage is to search for the principles underlying
the phenomena that give rise to theoretical science. Mathematical
equations are often used for elucidating principles, as is typically
seen in physics. We wonder if it is possible to establish mathe-
matical neuroscience. I have been dreaming of this for nearly five
decades, and it is still developing.

The brain has emerged via a long history of evolution, which is
different from that of universal physical phenomena. Even though
the principles of complex phenomena in everyday life are hidden
in theworld of physics, onemay think of extreme situations where
the fundamental principles can be directly observed. For example,
the principles of Newtonian mechanics are directly observed
in celestial motion. Extremely low temperatures are useful for
statistical physics. However, the brain is a living organ that cannot
survive in extreme situations. As it is a highly complex system,
we wonder whether it really is possible to discover mathematical
principles.

These arguments look so reasonable that I do not believe that
the detailed functions of the brain can be described by simple
mathematical equations. Information in the brain is widely dis-
tributed over networks of neurons and processed by parallel dy-
namics. It has learning and self-organizing capabilities. I believe
that there are fundamental principles based on which outstand-
ing information processing takes place due to parallel distributed
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dynamics with self-organization. As our brains have implemented
such principles throughout their extremely long history of evolu-
tion, it is not easy to understand the principles.

We need to construct ideal models of information processing to
elucidate such principles, in which parallel dynamics takes place
and information is widely distributed. Mathematical analysis of
the models would hopefully make it possible to understand the
underlying principles. Although the actual brain is different from
simplemodels, I believe that the same principles would work even
in very complex actual brains. As simple forms of principles are
insufficient to understand the real brain, we also need to find
how the principles are substantialized in the actual brain. Here
comes the role of computational neuroscience, which seeks for
computational aspects of realistic neural networks.

My research began nearly fifty years ago when I was striving to
discover the principles of the brainmathematically by using typical
simple models of neural networks. Allow me to take the liberty
of retrospectively describing my own research on mathematical
neuroscience. Some topics might have been superseded, having
been replaced bynewdevelopments, but some still remain classics.

2. Multilayer perceptrons as learning machines

When I first read a book on perceptrons, entitled ‘‘Principles of
Neurodynamics’’ (Rosenblatt, 1961), I wondered why the hidden
layer neurons could not be modified. Obviously, the capabilities
of multilayer perceptrons would be greater if all the neurons
were modifiable. To overcome the difficulty in learning hidden
neurons, I considered using nonlinear analog neurons, instead of
McCulloch–Pitts neurons, tomodelmultilayer perceptrons (Amari,
1967). I then defined a differentiable loss function (error function)
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for a general learning machine including a modifiable vector
parameter θ. When an input x is given, a learning machine with
parameter θ processes it. A loss function is defined, for example,
by the squared error

l(x, θ) =
1
2

|y − f (x, θ)|2 , (1)

where y is the required output and f (x, θ) is the actual output from
themachinewith parameter θ. A key point of using analog neurons
is that it makes f differentiable with respect to θ. I proposed a new
learning algorithm, which I called the stochastic gradient descent
method, defined by

θt+1 = −ε∇l (xt , θt) , (2)

since xt is a sequence of randomly chosen inputs. The paper
appeared in IEEE Transactions on Computers (Amari, 1967).

I was surprised when I read a galley proof of the well-known
back-propagation paper (Rumelhart, McClelland, & Hinton, 1986)
twenty years later. The algorithm (2) was called the generalized
delta rule in that paper and the beautiful name ‘‘back-propagation’’
was given to the learning algorithm. There were exciting new find-
ings in the paper such as back-propagating errors together with
lots of computer simulations. I could not present computer simu-
lated results in my previous paper, because computers were very
limited in Japan in the early sixties. Instead, my paper discussed
analysis of various aspects of the dynamics of learning, using a
stochastic approximation technique, and the dynamical behaviors
of learning were mathematically analyzed. The trade-off between
the speed and accuracy of learningwas clearly demonstrated.Most
of my results were rediscovered later by a number of researchers
(e.g., Heskes and Kappen (1991)). However, I have found that they
are insufficient and deeper analysis is needed because the multi-
layer perceptron provides a ‘‘singular’’ statistical model. As I will
touch upon later, information geometry is necessary to study its
dynamical behavior.

It was a surprise that my theory was introduced in a Russian
book by Tsypkin (1973). The theory of machine learning had
been well developed in Russia, which was then isolated from the
Westernworld. A remarkwasmade that no such research could be
found at that time in theWestern world except for Japan (Vladimir
Vapnik, personal communication).

3. Statistical neurodynamics

It was in the late sixties and through the seventies that I de-
voted myself to a program of research on the dynamical behaviors
of neural networks and learning. It consisted of statistical neuro-
dynamics (randomly connected networks), neural field theory, the
associative memory model, learning, and self-organization. I stud-
ied the dynamical behaviors of recurrently connected neural net-
works with random connections in 1969. The dynamical equation
I used is the same as that for the Hopfield network

τi
dui(t)
dt

= −ui +


j

wijf

uj(t)


+ si, (3)

where ui(t) represents the average activities of the i-th neuron or
i-th neuron pool, wij is the connection weight from neuron j to
neuron i, and f is a sigmoid function. I proved that randomly con-
nected networks can have monostable and multi-stable behaviors
depending on connection weights and external stimuli. Moreover,
I proved that a network consisting of excitatory and inhibitory
neurons has stable oscillatory behaviors (the discrete-time case in
Amari (1971) and the continuous-time case in Amari (1972a)). The

equations are

τE
duE(t)
dt

= −uE + wEE f [uE ] − wEI f [uI ] + sE, (4)

τI
duI(t)
dt

= −uI + wIE f [uE ] − wII f [uI ] + sI . (5)

The same model was independently proposed (Wilson & Cowan,
1972). The only difference was that their activation function f was
originally not amonotone sigmoid function, while I used a sigmoid
function from the beginning. The model with sigmoid f is now
widely known as the Wilson–Cowan oscillator. My paper (Amari,
1971) was submitted to the Proceedings of IEEE in 1969, but it
took two years for it to be published. I heard that an American re-
viewer had handed themanuscript to a graduate studentwho soon
dropped out, so that it was lost and not reviewed for over a year.
In addition to neural oscillators, it is now well known that chaotic
behaviors exist and are one of the fundamental characteristics of
these types of networks. However, chaos was not popular at that
time.

I naturally had an interest in the foundations of statistical neu-
rodynamics. This was a topic discussed by a Russian researcher Ro-
zonoer (1969), where the validity of annealed approximation was
the main subject. I undertook mathematical studies (Amari, 1974;
Amari, Yoshida, & Kanatani, 1977), although the problem still re-
mains unsolved. In connection with this, I studied microscopic dy-
namics of a simple random network of binary neurons, and found,
to my amazement, that its state transition graph had scale-free
properties (Amari, 1974, 1990). Each state had a unique next state
so that it had only one outgoing branch. This implied that the av-
erage numbers of incoming branches (or the parent states) of a
state was also one. However, its variance diverged to infinity as
the number, n, of neurons increased. This suggested that the in-
coming branches had a long-tailed distribution subject to a power
law.Weare nowstudying this topic further, elucidating differences
between Boolean logic random networks (Kauffman, 1969) and
random majority decision (neural) networks (Amari, 1974). Our
results demonstrated the origin of speed and robustness in bio-
logical decision systems including neural networks (Amari, Ando,
Toyoizumi, & Masuda, submitted for publication).

A neural field is a natural extension of neuron pools, which has
the topology of a continuous field. Wilson and Cowan (1973) car-
ried out pioneering work on its dynamics. Being inspired by their
work, I provided an exact mathematical theory of neural fields by
using theHeaviside activation function (Amari, 1977). This reduced
the dynamics of a field to that of the boundaries of excitation, so
that we could construct an exact theory. The existence and stabil-
ity of a bump solution aswell as a traveling bumpwere established.
A large number of papers on neural fields are currently appearing
and many new interesting phenomena have been discovered. This
is because the neural field is useful not only for analyzing work-
ingmemory in the brain, but also for explaining psychological phe-
nomena and robot navigation.

4. Associative memory

Four papers appeared in 1972 that concerned correlation-type
associative memory (Kohonen, Anderson, Nakano, and Amari).
Some were linear and some used ternary neurons. The model that
was proposed in Amari (1972b) was exactly the same as the so-
called Hopfield model of associative memory (Hopfield, 1982):

xi(t + 1) = sgn


j

wijxj(t)


, (6)

wij =


µ

sµi s
µ

j , (7)



Author's personal copy

50 S.-i. Amari / Neural Networks 37 (2013) 48–51

where x = (xi) represents binary state vectors (xi = ±1), and sµ =
sµi


, µ = 1, . . . ,m, arem patterns to bememorized. The patterns

are memorized as equilibrium states of network dynamics. I
mathematically analyzed its behaviors. Moreover, I introduced
an extended model for dynamically memorizing and recalling
sequences of patterns. The connection matrix


wij


is asymmetric

in that model

wij =


µ

sµi s
µ−1
j , (8)

where S =

s1, . . . , sm


is a sequence of patterns. This model

memorizes sequences of patterns and recalls them sequentially.
The contribution of Hopfield (1982) was overwhelming, be-

cause he introduced the notion of memory capacity for the first
time by using random patterns. He demonstrated by computer
simulations that the model could memorize about 0.14n patterns
in a model of n neurons. Because of this intriguing finding, statisti-
cal physicists entered this field and made great theoretical contri-
butions by using the replica method of calculating the expectation
of log probability. Sompolinski made a remark in one of his papers
that the same model was proposed earlier by Amari but the con-
tribution by Hopfield was so great that we called it the Hopfield
model.

The method of statistical physics is capable of analyzing the ca-
pacity of themodel. The replica method is further applied to learn-
ing machines and information systems. However, it is mostly used
to study equilibrium states, and lacks the dynamical process of re-
calling. Consequently, I proposed a dynamical equation of recall-
ing processes by introducing newmacroscopic quantities (Amari &
Maginu, 1988). Although the theory is not exact but approximate,
it does explain the interesting phenomena of recalling processes
such as the hysteresis of recalling and the fractal structure of the
basins of attraction. The theory was further extended by Okada
(1995). Ton Coolen extended the statistical-mechanical method
(Coolen & Sherrington, 1993; During, Coolen, & Sherrington, 1998),
and toldme that the Amari–Maginumethod gives the exact capac-
ity in the case of asymmetric sequence recalling.

5. Learning and self-organization

In my quest for principles of learning systems, I developed a
general theory of learning and self-organization (Amari, 1977),
and established a unified framework to neural learning and self-
organization. It elucidated various types of neural learning, which
were both supervised and unsupervised. For example, it was
pointed out that neural learning is capable of principal compo-
nents analysis, which was later analyzed independently and in-
tensively by Oja (1982). My theory of self-organization, inspired
by the model of von der Malsburg (1973), pointed out an impor-
tant role of modifiable inhibitory synapses for the first time. I was
surprised to see that the mechanism of self-organization was log-
ically the same as the Bienenstock–Cooper–Munro (BCM) model
of the sliding threshold (Bienenstock, Cooper, & Munro, 1982) that
appeared later. The only difference is that they used a modifiable
(sliding) threshold, while themodifiable inhibitory synapse played
the same role inmypaper. A detailedmathematical expressionwas
given to the dynamics of self-organization. This made it possible to
develop a theory of self-organization of neural fields, proposed by
Willshaw and von derMalsburg (1976) that integrated the dynam-
ics of neural fieldswith self-organization (Takeuchi &Amari, 1979).
The formation of a topological map was later further developed by
Kohonen (1982).

Other topics in my study on machine learning include the nat-
ural gradient method for multilayer perceptrons (Amari, 1998)
based on information geometry (Amari & Nagaoka, 2000). The

singular structure of the parameter space of multilayer percep-
trons was analyzed in particular detail (Amari, Park, & Ozeki, 2006;
Wei & Amari, 2008), demonstrating why the retardation of back-
propagation learning (plateau phenomenon) appeared and how
effective the natural gradient learning method was for overcom-
ing this difficulty. It complements the dynamics of learning stud-
ied previously. Machine learning is an interesting subject arising
from neural networks. The relation between training error and
generalization error has been analyzed in detail (Amari, Fujita,
& Shinomoto, 1992). Generalization capabilities depend on the
geometry of separating surfaces in the version space of a learning
machine (Amari, 1993), which should be further explored.

All these topics form the basic constituents of mathemati-
cal neuroscience as well as of machine learning. Obviously, new
important contributions have appeared, such as spike-timing de-
pendent plasticity (STDP), support vector machines (SVMs), and
methods to boost machine learning, toward which I havemade lit-
tle contribution. I hope all of these will be integrated to formulate
mathematical principles of learning.

6. Independent component analysis

The mandatory retirement age of the University of Tokyo was
60 (it has now been extended to 65). I was invited to organize a
theoretical group for Brain Science at RIKEN, which is a govern-
mental institute. I invited Andrzej Cichocki, who is an expert on
signal processing, in particular on independent component analy-
sis (ICA) to join RIKEN.He showedmeapaper byBell and Sejnowski
(1995). This led me to consider the natural gradient method of
learning (Amari, 1998; Amari, Cichocki, & Yang, 1996). I enjoyed
a new topic of research, because I was able to apply various math-
ematical tools such as information geometry, statistical inference,
Lie group theory, and even non-holonomic analysis. I had thought
when Iwas young that few creative ideaswould emerge from those
past their sixties. Therefore, I was glad to see one could still make
meaningful contributions past their sixties. My paper on a non-
parametric statistical method of ICA (Amari & Cardoso, 1997) was
given a best paper award by the IEEE Signal Processing Society. The
natural gradient method (Amari, 1998) is a consequence of infor-
mation geometry and can be applied to various other problems. I
mentioned that it was applied to machine learning, particularly to
multilayer perceptrons, to provide excellent convergence of learn-
ing. It was also applied to reinforcement learning under the name
of the policy natural gradient. See, e.g., Amari, Kurata, and Nagaoka
(1992), Ikeda, Tanaka, and Amari (2004) and Murata, Takenouchi,
Kanamori, and Eguchi (2004) for applications of information ge-
ometry to machine leaning.

7. Information geometry of neuronal spikes

I proposed information geometry in my forties in which I stud-
ied the invariant geometrical structure of a manifold of prob-
ability distributions (Amari & Nagaoka, 2000). It used modern
differential geometry in which I introduced a new mathematical
concept of dual affine connections. Itwas a different field fromneu-
ral networks, but I dreamed of applying it even to neural networks.
I foundmanyoutstanding young researchers,whowere better than
I, and it appeared that the information-geometrical method might
distinguish me from more competent researchers. Indeed, I pro-
posed the natural gradient method based on it (Amari, 1998). I
wanted to discover further applications of information geometry
to neuroscience.

Neural activities are often stochastic and carried by spikes of
neurons. It is important to analyze the joint probability distribution
of spikes. Spike sequences include various information such as
firing rates, pairwise correlations, and further intrinsic higher
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order correlations. We need to clearly separate the effects of
firing rates, pairwise correlations and higher order correlations.
The firing rates of neurons can easily be estimated from data.
The correlations of two neuronal spikes are usually calculated
by covariances of spikes. However, the two parameters of firing
rates and covariance are not orthogonal from the point of view
of information geometry (Amari, 2009). This implies that, when
firing rates change, the covariances change even if the mechanism
for their interactions does not change. Therefore, covariance is
not a good measure of the mutual interaction of two neurons. An
orthogonal measure of higher-order correlations is also needed.

I proposed orthogonal parameters in a general hierarchical
model of probability distributions (Amari, 2001). Here, the orthog-
onality of these parameters is defined in terms of the Rieman-
nian geometry of Fisher information (Nakahara &Amari, 2002).We
have also proposed amechanism for the emergence of higher order
correlations (Amari, Nakahara, Wu, & Sakai, 2003). However, it is
not realistic to search for all higher order correlations from exper-
imental data. I am searching for a method of sparse signal analysis
that can be applied to this problem.

Information geometry is now one of the most important meth-
ods of analyzing neuronal spike data, see, e.g., Miura, Okada, and
Amari (2006).Whenparts of data aremissing orwhen thedecoding
schemes of spikes use an unfaithful model, we want to know how
much information loss is caused (Oizumi, Okada, & Amari, 2011). I
am currently engaged in this topic.

8. Concluding remarks

I have taken a retrospective glance covering half a century ofmy
research life. I belong to amiracle generation, because the Japanese
economy had dramatically developed through this period. I came
from an underprivileged background and never thought of having
opportunities of visiting foreign countries, driving a car, or
speaking in English. Japan was not economically developed at that
time (in the sixties), and I could not even use airmail to submit
papers to international journals. Sea mail to America took nearly
a month one way. There were no opportunities at that time for me
to visit foreign countries to participate in conferences. However, I
was lucky to be able to devote myself to research in isolated and
serene academic circumstances. The impossible then changed to
the possible as time went on. I have led a fortunate life by focusing
on research, and I am still working in academia. I am still dreaming
of establishing the field of mathematical neuroscience, but young
researchers should go further beyond my classic research, which
I commend passionately. I am looking forward to hearing about
their further developments toward mathematical neuroscience.

My dream would come true if my personal message could
encourage young researchers in this emerging field, particularly
those from developing countries.
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